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Abstract

We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a
1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000)
and compare different filtering techniques. Furthermore, we demonstrate experimentally
that inference in a complex hybrid DBN is possible by simulating fault detection in a
watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a
hybrid 2T-DBN. In both experiments, we perform approximate inference using standard
filtering techniques, Monte Carlo methods and combinations of these. In the watertank
simulation, we also demonstrate the use of ’non-strict’ Rao-Blackwellisation. We show
that the unscented Kalman filter and UKF in a particle filtering framework outperform the
generic particle filter, the extended Kalman filter and EKF in a particle filtering framework
with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice
of network structure. Especially we demonstrate the superiority of UKF in a PF framework
when our beliefs of how data was generated are wrong. Furthermore, we investigate the
influence of data noise in the watertank simulation using UKF and PFUKD and show
that the algorithms are more sensitive to changes in the measurement noise level that the
process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Keywords: Hybrid Bayesian Networks, Dynamic Bayesian Networks, Particle Filter-
ing, Extended Kalman Filter, Unscented Kalman Filter, Extended Kalman Particle Filter,
Unscented Filter, Rao-Blackwellisation

1. Introduction

Bayesian networks (BN) (J. Pearl, 1988) have been used in a variety of problem domains,
for example medical expert systems. However, often the problems treated in literature are
very simple. Much of the work has been focused on static BN’s with discrete, stochas-
tic variables and linear variable relations where the model structure allows effective exact
inference (Doucet et al., 1998). Models allowing time varying relations between network
variables1, dynamic Bayesian networks (DBN) (Dean & Kanazawa, 1989), allow for much

1. Note that the network structure is not changed over time
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more complex modelling. However, in discrete DBN’s the cost of inference is exponential
and in most hybrid (discrete and continuous valued) systems (Kalman filters being the only
notable exception) the complexity of the belief state grows unboundedly over time (Lerner
& Parr, 2001). The solution was the introduction of sequential Monte Carlo methods also
known as particle filters (PF). In (Koller & Lerner, 2000) a PF has been applied to a discrete
valued traffic monitoring DBN. One of the major drawbacks of PF, however, is that sam-
pling in high dimensional spaces can be very difficult. In some cases, we can take advantage
of the model structure and analytically marginalize out substructure(s) conditioned on the
remaining (sampled) nodes using standard algorithms such as the Kalman filter. Hence,
we can reduce the sampling space dramatically. This idea has been applied to a variety
of problems such as concurrent localization and map learning for a mobile robot (Murphy
& Russell, 2001) which operates in a discrete valued domain. In the hybrid domain, the
technique has been applied to for example real-time monitoring of complex industrial pro-
cesses (Morales-Menendez et al., 2002) and fault diagnostics (de Freitas, 2002), but using
only linear variable relations. In many real-life problems, we need hybrid models that allow
non-linear relations. Thus we need approximate inference techniques such as the extended
Kalman filter (EKF) which is an estimator based on the Taylor series expansion of the non-
linear functions (Grewal & Angus, 1993) or the unscented Kalman filter (UKF) (Julier &
Uhlmann, 1997). The UKF is a recursive estimator that uses the true (non-linear) models
and makes a Gaussian approximation of the distribution of the state random variable. Us-
ing EKF as a proposal generator in a PF framework leads to the extended Kalman particle
filter Doucet et al. (1998) and using the UKF as proposal generator leads to the unscented
Filter (v.d. Merwe et al., 2000) in this work abbreviated PFEKF and PFUKF resp. These
techniques have been used in (v.d. Merwe et al., 2000) on a 1-D continuous valued model.

Working on non-linear, hybrid DBN’s we allow modelling of many real-life problems.
Hence, it is of great interest to investigate inference in these models. It is the aim of this
paper to work on a real-life problem with linear as well as non-linear relations and keep
all observations in their ’true’ domain leading to models with both discrete and continuous
valued nodes. We assume a Markovian, stationary model and setup a 2T-DBN in which
nodes given at time t is dependent only on variables at time t and t−1. We compare several
different techniques for inference and describe our observations in details. Initially, we com-
pare the techniques on a dynamic 1-D continuous state estimation problem. The network is
comparable with the one in (v.d. Merwe et al., 2000), but we use variable relations different
from the ones used in the data generation to resemble the most common (and more diffi-
cult) situation that we do not know how exactly how data was generated. We also extend
our model to include a third order relation. We visualize the strength of the UKF based
implementations when the variable relations are of higher order and when the true variable
relations are unknown. Next, we implement the non-linear, hybrid fault diagnostics DBN
from (Koller & Lerner, 2000). However, we do not limit ourselves to inference using the
generic PF (as in Koller & Lerner, 2000), but take advantage of the network structure. An-
alytically marginalizing out substructure(s) conditioned on the remaining (sampled) nodes
is known as Rao-Blackwellisation (RB) (Casella & Robert, 1996). Combining RB with PF
is known as Rao-Blackwellised particle filtering (RBPF). Strict RB is not possible with non-
linear equations. In this experiment we apply a technique that we have named ’non-strict’
Rao-Blackwellisation. That is we keep the non-linear relations, sample the discrete nodes
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and apply approximate inference to the remaining (Kalman) substructure as proposed as
future work in (Koller & Lerner, 2000). We show that UKF and PFUKF are superior with
respect to estimation root mean-square-error (RMSE) and discrete failure tracking com-
pared to the generic PF, EKF and PFEKF. The performance of the generic PF, EKF and
PFEKF are also shown to be highly sensitive to the choice of network structure. Hence,
we propose a new network that solves this problem. An experiment with different levels of
data noise shows that this aspect is also important for our modelling and choice of filtering
algorithm. Next, we present an experiment using a measurement model different from the
one used to generate the data as we do not want algorithms that fail when we do not know
the true variable relations. We demonstrate the superiority of UKF in a PF framework
when our beliefs of how data was generated are wrong. In (Koller & Lerner, 2000) no ex-
periments are presented using different levels of noise or a false measurement model.

The paper is outlined as follows: First, we give a very brief overview of Bayesian net-
works, PF, EKF and UKF and the combination of these. Next, we present our 1-D simu-
lation using a false process model. Finally, we present the more complex fault diagnostics
simulation showing significant advantages using UKF and PFUKF.

2. Filtering in Bayesian Networks

In this paper, bold face symbols indicate a vector or a matrix and standard face symbols
are scalars. We focus on experimental results based on existing theory. For a thorough
description, please refer to (v.d. Merwe et al., 2000).

Converting a multivariate Gaussian distribution into a Bayesian network by ordering
the variables x1, ..., xn topologically (parents before children), the distribution of a child
conditioned on its parents is computed as P (xi|x1, ..., xi−1) = N

(
xi;βi,0 +

∑i−1
j=1 βi,jxj , σ

2
i

)
.

An edge from xj to xi(1 ≤ j < i) corresponds to βi,j 6= 0. Estimating the state of a system
using a set of observations that becomes available on-line, i.e. filtering, is solved by modelling
the evolution of the system. The general state space model (without control input) consists
of a state transition or state process model and a state measurement model

p(xt|xt−1), p(yt|xt) (1)

where xt ∈ <nx are the states (hidden variables) of the system at time t, yt ∈ <ny are the
observations and p(x0) is the prior distribution at time t = 0. The state transitions are a
first order Markov process and the observations are assumed to be independent given the
states. For example, non-linear, non-Gaussian models can be expressed as

xt = f(xt−1, vt−1), yt = h(xt, nt) (2)

where vt ∈ <nv is the process noise and nt ∈ <nn the measurement noise. From eq.
(2) we get p(x̄t|x̄t−1, v̄t−1) = δ (x̄t − f(x̄t−1, v̄t−1)) and p(ȳt|x̄t, n̄t) = δ (ȳt − h(x̄t, n̄t−1))
and obtain an expression for eq. (1): p(x̄t|x̄t−1) =

∫
δ (x̄t − f(x̄t−1, v̄t−1)) p(v̄t−1)dv̄t−1

and p(ȳt|x̄t) =
∫

δ (ȳt − h(x̄t, n̄t)) p(n̄t)dn̄t. Our goal is to compute the filtering density
p(xt|y1:t) recursively to avoid computing the complete posterior density p(x0:t|y1:t). Thus
we avoid keeping track of the complete history of the states and are still able to compute
estimates of the mean, confidence intervals etc. of the system states.
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In the extended Kalman filter the standard Kalman filter (for linear systems) is ap-
plied to non-linear systems with additive white noise by continually updating a linearization
around the previous state estimate, starting with an initial guess. Hence, it is a minimum
mean-square-error (MMSE) estimator based on the Taylor series expansion of the non-
linear functions f and h around the estimates x̄t|t−1 of the states xt, for example f(xt,vt) =

f(x̄t|t−1, v̄t|t−1)+
∂f (xt,vt)

∂xt

∣∣∣(xt=x̄t|t−1)(xt − x̄t|t−1)+
∂f (xt,vt)

∂vt

∣∣∣(vt=v̄t|t−1)(vt − v̄t|t−1) + . . .

As the EKF only uses the first order terms of the Taylor series expansion of the non-linear
functions, it may introduce significant errors in the estimation of the posterior distribution
of the states. Especially if the models are highly non-linear where the local linearity assump-
tions do not hold. The unscented Kalman filter is a recursive MMSE estimator that does
not approximate the non-linear process and measurement models, but uses the true models
and approximates the distribution of the state random variable. The state distribution is
still represented by a Gaussian random variable, but by a minimal set of deterministically
chosen sample points that completely capture the true mean and covariance of the Gaussian
random variable. When this variable is propagated through the true non-linear system, it
captures the true mean and covariance to the second order for any non-linearity. To calcu-
late the statistics of a random variable undergoing a non-linear transformation, as required
by the UKF, the scaled unscented transformation (SUT) (Julier & Uhlmann, 2002) is used.
From a computational perspective, the UKF is superior to EKF, as it does not require ex-
plicit calculation of Jacobians (or Hessians), but computes a covariance matrix square root
which can be done using a Cholesky factorization in order n3

x/6. However, by expressing
the covariance matrices recursively, this can be done in order n2

x using a recursive update
to the Cholesky factorization (v.d. Merwe et al., 2000).

EKF and UKF both rely on a Gaussian approximation. PF represents a generalization
of Monte Carlo methods for a dynamic process. It constructs the conditional probability
of the state variables, with respect to the measurements, through a random exploration of
the state space by entities called particles drawn from a proposal distribution (which should
resemble the true posterior distribution as much as possible). A weight is assigned to each
particle by a Bayes correction term based on the measurements. The algorithm approxi-
mates the initial distribution P0(x) by N Dirac measures (the particles). Each one has an
initial probability of 1/N (the weight) and proportionally more particles are placed on the
more probable regions of state space. This representation is equivalent to the bootstrap tech-
nique. Then the process evolution is done by particle propagation according to the model
dynamics and, finally, the measurements are incorporated into the particles by the Bayes
correction factor given by the conditional probability P (y|xi), where y is the measurement
and xi is the i-th particle state. Therefore, at each time step, the ensemble of particles
estimates the a posteriori distribution of the state x. In this paper our goal is to perform
filtering on the given models, that is to compute a sequential estimate of the posterior distri-
bution at time t without modifying the previously simulated states x0:t−1 allowing proposal
distributions of the form q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1,y1:t) Assuming the states
follow a first order Markov process and that the observations are conditionally independent
given the states yields p(x0:t) = p(x0)

∏t
j=1 p(xj |xj−1) and p(y1:t|x0:t) =

∏t
j=1 p(yj |xj) and

a recursive estimate for the importance weights ωt = ωt−1
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1,y1:t)

. Now, given a
proposal distribution and a set of prior samples, we are able to sequentially sample and
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evaluate likelihood, transition probabilities and importance weights leading to estimates of
the state mean and covariance. The transition prior q(xt|x0:t−1,y1:t) $ p(xt|xt−1) is the
most popular choice of proposal distribution (even though it gives higher variance as it does
not include the most recent observations) simply because it is easier to implement. We refer
to this implementation as the generic PF. For an additive Gaussian process noise model the
transition prior simplifies to

p(xt|xt−1) = N (
f(xt−1, 0), Qt−1

)
(3)

In practice, what happens is that after a few time steps one of the normalized importance
weights is close to 1 while the rest is close to 0. In other words, a lot of the samples become
useless and are neglected. To avoid this phenomenon, degeneracy, the particles need to be
resampled (selection step) to eliminate particles with low importance weights and multiply
particles with high importance weights. We implemented sampling importance resampling
(SIR), multinomial sampling and residual resampling, see (v.d. Merwe et al., 2000) and
(Liu et al., 2000) for details. They are all O(N) algorithms. In the experiments, however,
the choice of resampling algorithm did not seem to influence the results significantly and
residual resampling was chosen arbitrarily. Another way to introduce sample variety
after the selection step without affecting the validity of the approximation is to introduce
a MCMC step of invariant distribution p(x0:t|y1:t) on each particle. If the particles are
distributed according to the posterior p(x̃0:t|y1:t), and we apply a Markov chain transition
kernel K(x0:t|x̃0:t) with invariant distribution p(x0:t|y1:t) s.t.

∫ K(x0:t|x̃0:t) p(x̃0:t|y1:t) =
p(x0:t|y1:t), we still have a set of particles distributed according to the posterior. However,
the particles might have been moved to areas of higher likelihood and the total variance of
the current distribution with respect to the invariant distribution can only decrease (Doucet
et al., 2000b). In the generic PF this is implemented by sampling from the transition prior
and accept according to a Metropolis-Hastings (MH) step. We refer to this filter as PFMC.
Using the transition prior as proposal distribution we do not include the latest observation.
To overcome this problem, we use the EKF and UKF as proposal generators.

In this work, the EKF approximates the optimal MMSE estimator of the system state. It
computes the conditional mean of the state given all observations recursively through time
by propagating the Gaussian approximation of the posterior distribution and combining
it with the new observation available at each time step. That is, the EKF computes the
recursive approximation of the true posterior filtering density given by

p(xt|y1:t) ≈ pN (xt|y1:t) = N
(
x̄t, P̂t

)
(4)

Using the EKF in a particle filtering framework, a separate EKF is used to generate and
propagate a Gaussian proposal distribution for each particle q(x(i)

t |x(i)
0:t−1,y1:t)

.= N (xt|y1:t),
i = 1, . . . , N . Thus, we need to propagate the covariance P̂ (i) and specify the EKF process
and measurement noise covariances. Secondly, the i-th particle is sampled from this distri-
bution. This filter is called the extended Kalman particle filter. However, even though the
EKF moves the prior towards the likelihood, we are still faced with the Gaussian assump-
tion on the form of the posterior and linearization approximations. Comparing eq. (4) with
the Gaussian transition prior in eq. (3), it is noted that the proposal distribution generated
by the EKF includes the most current observation at time t. In general though, the true
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form of this density will not be Gaussian - even with Gaussian process and measurement
noise - which can be shown using a Bayes rule expansion of the proposal distribution. This
implies that we are left with an experimental judgement of the gain versus the loss of filter
performance. As mentioned, the UKF propagates the mean and covariance of the Gaus-
sian approximation to the state distribution more accurately than the EKF and tends to
generate better estimates of the true covariance of the state. Furthermore, the distributions
generated by the UKF generally have a broader overlap with the true posterior distribution
compared to the EKF estimates which is partly due to the fact that the UKF computes
the posterior covariance accurately to the second order whereas the EKF uses a first order
biased approximation. The UKF also includes the latest observations, but in a more accu-
rate way. Hence, the UKF is more likely to generate more accurate proposal distributions
within the particle filtering framework. Using the UKF as proposal distribution generator
leads to the unscented filter.

3. 1-D simulation

Initially, we work on a 1-D continuous valued state estimation problem. We apply the
generic PF and PFMC and compare these solutions with the EKF and the UKF. We also
implement PFEKF and PFUKF with and without an MH step (referred to as PFEKFMC
and PFUKFMC resp. using an MH step). For a more detailed presentation and more
experiments using this network, please refer to (Andersen & Andersen, 2003). Our DBN
has three nodes and is illustrated in Figure 1.

Figure 1: DBN for one-dimensional problem

The true process model is a noisy AR(1) model given by xt = 2 + cos(απt) + βxt−1. The
measurement model is given by

yt =





θ1xt t <= 20
θ2xt

2 20 < t <= 40
θ3xt

3 t > 40
(5)

The measurement model was chosen to compare the algorithms for distributions with in-
creasing non-linearity. In all experiments we use α = 0.05, β = 0.5, θ1 = −1, θ2 = 0.05
and θ3 = 0.01 in the data generation. All experimental results were based on an average
over 10 runs and all particle filters (all algorithms except EKF and UKF) used a fairly
low number of particles (500) allowing us to show how the different particle filters perform
without using too many samples. To simulate a real-life situation where the a prior knowl-
edge of the system is often incomplete, we propose a process model different from the true
one to simulate an approximate model. In (v.d. Merwe et al., 2000) experiments using a
similar network are presented, but most importantly, experiments are only performed using
the true process and measurement models. Furthermore, the measurement model in (v.d.
Merwe et al., 2000) does not include a third order relation. The proposed (false) process

6



Filtering in Hybrid Dynamic Bayesian Networks

model was xt = 2+cos(απt)+ β̃xt−1 using α = 0.05 and β̃ = 0.2. In the data generation we
draw process and measurement noise samples from the Gaussian distributions N (0, 1) and
N (0, 1e − 4) resp. and propose similar noise levels (that is we apply a reasonable process
noise compared to our data values (in the range of approximately 0− 12) and a low mea-
surement noise indicating reliable observations. The results of this experiment are shown
in Table 1 and the tracking plots in Figure 2 and 3. In Figure 4 the noise level and the
RMS error for the EKF/UKF and PFEKF/PFUKF state mean estimates (for t = 41− 60)
are shown.

Algorithm RMSE
mean var

Extended Kalman Filter (EKF) 0.8120 0
Unscented Kalman Filter (UKF) 0.3682 0
Particle Filter - generic (PF) 0.9666 8.4e-3
Particle Filter - Metropolis-Hastings move (PFMC) 0.9640 1.6e-3
Particle Filter - EKF proposal (PFEKF) 0.7977 3.9e-6
Particle Filter - EKF proposal and MH move (PFEKFMC) 0.7961 3.0e-5
Particle Filter - UKF proposal (PFUKF) 0.0823 1.4e-3
Particle Filter - UKF proposal and MH move (PFUKFMC) 0.0821 1.1e-3

Table 1: Mean and variance of RMSE values of state mean estimates using the false process
and true measurement models, 500 particles and averaging over 10 runs. The
variance is due to the 10 independent runs which include random steps.
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Figure 2: True state values, EKF and UKF estimates using the false process and true
measurement models. Notice how EKF and UKF are similar in the first order
stage, but in the second and third order stage the UKF estimates are consistently
closer to the true state values than the EKF estimates.

The use of a false process model naturally makes it a lot harder for the algorithms to
estimate the states as our beliefs of how the data was generated are no longer true. As
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Figure 3: True state values, PF, PFEKF and PFUKF estimates using the false process and
true measurement models Notice how EKF and UKF are similar in the first order
stage where PF performs poorly in comparison, but in the second and third order
stage the UKF estimates are consistently closer to the true state values than
both the PF and the EKF estimates. The larger covariance estimates generated
by UKF compared to EKF makes UKF better suited as proposal generator in a
PF framework. PFUKF thus takes advantage of the good properties in UKF as
well as in PF.
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Figure 4: Noise level and RMS error for PF, PFEKF and PFUKF state mean estimates
for t > 40 using the false process and true measurement models. Notice how the
EKF estimates are consistently too large (negative bar values) and how PFEKF is
not able to correct these errors. In comparison, UKF most often underestimates,
but is much closer to the true state values than PF and PFEKF especially when
the noise samples are large. PFUKF improves the UKF estimates very much and
hardly makes any mistakes. In comparison, PF itself has a hard time when the
noise samples are large as with PFEKF, but this simpler approach is actually
better than PFEKF for small noise samples.
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mentioned, this is the most likely situation in real life and thus we need a filter which does
not fail dramatically when our beliefs are wrong. We notice how the generic PF is not
capable of making better state mean estimates than EKF and UKF as sampling from the
prior using a false process model leads to rather poor results. And the MH move is not
enough to improve the situation significantly as the prior is too far from the likelihood.
In similar experiments (data not shown) using the true process and measurement models,
we observed that the MH step had a more positive effect on the results of the generic PF.
However, it is interesting to see how the main loss of accuracy compared to EKF is in the
first order stage of the measurement model which is seen by comparing the estimates of
EKF in Figure 2 with the estimates of PF in Figure 3. This is where EKF is able to capture
the true posterior mean and covariance. In the higher order stages PF is actually giving
better state mean estimates than EKF. PFEKF/PFEKFMC perform slightly better than
EKF taking advantage of the sampling as the state variance estimates of EKF are now
partly based on the Jacobian of a false process model. It is still capable of tracking in the
first order stage though as illustrated in Figure 2, but its limitations are shown in the higher
order stages. And finally, PFUKF and PFUKFMC prove their superiority by keeping the
estimation error on a very low level. UKF itself is suffering from the use of a false process
model in the higher order stages, but is still capable of working as a proposal generator in
a PF setup and perform better than the EKF based implementations. Similar experiments
were performed using the true models and applying Gaussian and Gamma noise (data not
shown). These experiments supported the results presented here, but the difference in per-
formance was less significant as the problem was less complicated. Hence, we prefer PFUKF
when we work on higher order models or feel uncertain that our beliefs are correct and have
the necessary computational time. Otherwise, we would settle for UKF or the generic PF
which has the advantage that we can work on model that do not have a Kalman structure.

The proposed (false) process model was xt = 2 + cos(απt) + β̃xt−1 using α = 0.05 and
β̃ = 0.2.

4. Watertank simulation

Next, we apply our filtering techniques to a complex hybrid model presented in (Koller &
Lerner, 2000) which models a process commonly used as a benchmark in the fault diagnos-
tics (Mosterman & Biswas, 1999). The system is shown in Figure 5. For a more detailed
presentation and more experiments using this network, please refer to (Andersen & Ander-
sen, 2003). In the system Tank1 and Tank2 have pressure P1 and P2 resp. The watertanks

Figure 5: Illustration of the watertank system
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are connected via a pipe with resistance R12 and flow F12. Each tank has a pipe from which
water flows out of the tank with resistances R1o and R2o and flows F1o and F2o resp. The
first tank also has a constant flow of water Fin going into it. We get measurements M1o,
M12 and M2o of the flows in each of the three pipes. The 2T-DBN in Figure 6 describes
how flow, pressure and resistance are related in theory. Practically, the process and mea-
surement models and the measurements themselves are noisy. Furthermore, there are three
possible type of failures in the system: Measurement failure: Usually measurements are
quite reliable, but in the case of a measurement failure, the measurement becomes extremely
noisy. Pipe bursts: A pipe can suddenly burst and change its resistance to some unknown
value Drifts: The resistance of the pipe can drift gradually increaseing or decreasing the
pipes resistance.

Figure 6: DBN for the watertank system

The 2T-DBN modelling the two-tank system is shown in Figure 6 with discrete vari-
ables depicted as rectangles and continuous variables circles. RF indicate pipe resistance
faults (drifts or bursts) and MF indicate measurement failures. P , F and R are continuous
valued and indicate pressure, flow and pipe resistance resp. M indicate observable flow
measurements. All other variables are hidden. By explicitly modelling the pipe resistance,
we accurately model the physical system. However, as the flow is the ratio between the
pressure and the resistance we have to deal with ratios which is difficult, especially when
the values are close to zero. Instead of modelling the resistances we choose to model the
conductances (reciprocal of the resistance). This transformation results in products rather
than ratios. The system is still non-linear, but this does not pose a problem for our algo-
rithms. Note the difference between the measurement failure nodes and the pipe faults. The
pipe faults are persistent and therefore appear both at time t and time t + 1. Measurement
failures, on the other hand, are transient and therefore appear only at time t + 1 and need
not be included in the belief state. As a result, the network has six pipe fault variables
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and three measurement failure variables, leading to 32,768 different discrete states. To sim-
plify, the pipe connecting the two tanks can not burst. This would imply writing a new set
of mass balance equations to model the physical system. As a consequence, the discrete
variable state space is reduced to 18,432 states. Unfortunately, this network is still far too
complicated to be able to use exact inference. In fact, the belief state at time t is a mixture
of Gaussian’s with a number of mixture components that grows exponentially with t, and
with the number of discrete variables in each time slice.

Suboptimally, we would like to sample all discrete indicator variables, that is conduc-
tance and measurement failures, which can be grouped into two vector-valued nodes CF t

and MF t and apply exact inference on the remaining continuous valued nodes, which we
group into a single vector-valued node, Xt. The observation nodes are likewise grouped into
a single vector-valued node Y t allowing a transformation of the fairly complicated network
into a simple network as illustrated in Figure 7. The network corresponds exactly to the
original network as all connections are expressed in form of the transition matrices, that is
CF t = A · CF t−1, Xt = B (CF t) ·Xt−1 and Y t = D ·Xt. This transformation allows
us to sample part of the network and apply exact inference algorithms to the remaining
part. A technique known as Rao-Blackwellisation (RB). Unfortunately, although the noise

Figure 7: Simplified DBN for the watertank problem

is Gaussian, the dynamics are non-linear, making it hard to integrate out Xt. Hence, we
apply our approximate inference techniques EKF and UKF and call it ’non-strict’ RB. To
compare, we also apply a generic PF, PFMC, PFEKF and PFUKF. 6 programs were cre-
ated in Matlab implementing the 6 algorithms mentioned above and named accordingly.
All programs except the generic PF and PFMC were designed as a two-step serial process.
The first process samples the discrete nodes using a generic PF algorithm, but without
updating the continuous state variables. The continuous states are then estimated (for each
particle) in the second process using EKF, UKF, PFEKF or PFUKF. This two-step process
was used as all the EKF and UKF based algorithms were able to give good estimates of
the continuous nodes based on poor estimates of the discrete nodes due to the correction
step in EKF and UKF. In the proposed network structure, the flow nodes are the only
nodes directly connected to the observation nodes (see Figure 6). This design favors a
good estimation of the flow using EKF and the generic PF. In EKF, the Kalman gain is
partly based on the Jacobian of the measurement model. As the Jacobian is calculated
by taking the derivative of the measurement model with respect to the 8 continuous state
variables, only the flow variables will be represented in the Jacobian. Even though pressure
and conductance are highly correlated with the flow, the Kalman gain only influences the
flow estimates. As pressure at time t is calculated using pressure and flow at time t − 1,
a good flow estimate corresponds to a good pressure estimate. However, this is only valid
if the pressure nodes are initialized correctly and if there is no noise. The conductance at
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time t is only based on the conductance at time t− 1 and the conductance failure at time
t. Assuming the right conductance failures are chosen in the PF step, EKF will produce
fairly good estimates of the conductance if it is initialized well and if the level of noise is
low. Figure 8 shows the relative RMSE of the flow, conductance and pressure estimates for
a typical run using EKF with correct initialization of all state variables. Both process and
measurement noise samples were drawn from a Gaussian distribution N (0, 0.1) which is a
reasonable noise level compared to the drifting factor of 2 used in this experiment. When
the conductance (resistance) of a pipe changes, it is due to drifting (or a burst). To be able
to distinguish between noise and drifting, the drifting factor should be fairly large compared
to the noise values. Figure 8 illustrates that EKF is making poor conductance and pressure
estimates whereas the flow estimates are very accurate for all time steps.
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Figure 8: Relative RMSE for conductance (red graph), pressure (black graph) and flow
(blue graph) estimates for a typical run using EKF with correct initialization.
Notice how EKF is only capable of estimating the flow values.

In the generic PF, a number of particles are produced by sampling from the transition
prior. In each time step, all particles are weighted according to their likelihood, that is
based on the difference between the true and predicted values of the observation nodes.
With only the flow nodes connected to the observation nodes, a particle with accurate
flow values estimates will give a high likelihood regardless of whether the particle has poor
conductance or pressure estimates. This problem is illustrated in figure 9 which shows how
10 particles are weighted for a given time step using the generic PF. The actual weights
used follow the weights based on the flow values and not the optimal weights. A large
process noise would make this problem even worse. In UKF, the Kalman gain is based on
a number of sigma points that are propagated trough the network using the true process
and measurement models. Both pressure and conductance are highly correlated with the
observation nodes, even though they are not directly connected, which makes UKF able to
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Figure 9: The actual weights used in the generic PF (blue bars), the optimal weights based
on the distance from the true continuous state values (green bars) and the weights
based on the distance to the true flow values (red bars) for 10 particles. Notice
how the actual weights used follow the weights based on the flow values and not
the optimal weights.

updates all continuous state variables. One of the objectives in the watertank problem is
to track failures making accurate estimation of the conductance a crucial point. Hence, a
new network was proposed by eliminating the flow nodes allowing conductance and pressure
nodes to be directly connected to the observation nodes. The flow measurements are now
predicted based on pressure and conductance plus noise. When data is generated using
the old network, noise is added to the flow nodes making the data more noisy in the new
network. To compare the two networks, the old network was used to generate datasets
to be used in both networks. One would expect the old network to make more accurate
estimates than the new network using a data set generated by itself. Figure 10 shows the
average RMSE for the conductance and pressure estimates from the two networks using the
generic PF, EKF and UKF. The results are based on 10 different data sets using 10 runs
for each data set. Again, the process and measurement noises samples were drawn from a
Gaussian distribution N (0, 0.1) and the conductance drifting set to 2 (change in resistance
units per time unit). As illustrated, the new network outperforms the old network for
all continuous state mean estimates using PF and EKF. The difference in performance for
EKF becomes even more obvious using a poor initialization of the pressure and conductance
values (data not shown). In comparison, the performance of UKF does not depend on the
network structure. Based on the experiments, the new network structure was preferred and
used in all forthcoming experiments. Based on the simulation in sec. 3 and the presented
experiment, we see no further reason to include the EKF based implementations. We keep
the generic PF algorithms for comparison.

To evaluate our estimates of the discrete failure nodes we need to compare the process
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Figure 10: Average RMSE for conductance and pressure estimates using the old network
(red bars) and the new network (blue bars) with PF, EKF and UKF resp.
The performance of UKF algorithm is independent of the network structure as
opposed to PF and EKF.

and measurement noise levels with the extent to which a certain failure influences the
flow. To give an indication of how robust the algorithms are with respect to the noise
level, experiments were performed changing the level of noise in the data. Only UKF and
PFUKF were used in this experiment as they showed superior performance in the previous
experiments. In all experiments the true noise levels were used as process and measurement
noise proposals in the filtering algorithms. Four different process and measurement noise
levels were used, N (0, σ2), σ2 = 0.01, 0.1, 0.2 and 0.4. The continuous state mean estimation
RMSE and the number of wrong failure estimates as a function of the noise levels are shown
in Figure 11. A time period of 100 time steps were used and the results based on 20 different
data sets using 10 runs for each data set. Outliers were removed. Notice the nice correlation
between the RMSE and the number of wrong failure estimates for UKF (two left plots in
Figure 11) and PFUKF (two right plots in Figure 11). An accurate continuous state estimate
corresponds to a small RMSE making it easier to track the failures and vice versa. Both the
RMSE and the average number of wrong failure estimates using UKF and PFUKF are more
influenced by the level of measurement noise than the process noise as the state estimates
are updated based on the estimates of the observation nodes. A noisy connection between
state variables and observation variables is thus more severe than a noisy process model.
Furthermore, Figure 11 once again illustrates the relationship between UKF and PFUKF.
PFUKF is doing much better than UKF for large measurement noise levels, but notice that
the RMSE increases using the smallest process noise level (0.01). Here, PFUKF is actually
doing worse than UKF. When UKF makes accurate estimates, PFUKF can make matters
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Figure 11: Surface plots showing the RMSE (top plots) and CF/MF estimation errors (lower
plots) using UKF (left plots) and PFUKF (right plots) based on 16 different
measurement and process noise combinations

worse by either fitting the measurement noise or sampling from a Gaussian distribution
that is too wide.

In a real life simulation one of the major challenges is to come up with reasonable
process and measurement models. In a simulation we know the true models and hence
UKF is able to make very accurate state estimates leaving no real space for improvement
by further sampling in PFUKF. Hence, PFUKF should prove its superiority in scenarios
where UKF is not given optimal conditions. To investigate this, we experiment by changing
the proposed measurement model by simply adding 5% to all the flow estimates. PF and
PFMC were also included in the experiments for the sake of comparison. 100 particles
and 30 subparticles (particles used in the estimation of the continuous states) were used
over a time period of 60 time steps. The process and measurement noise samples were
drawn from the Gaussian distribution N (0, 0.1). Table 2 shows the mean continuous state
mean estimation RMSE and variance using 10 different data sets and 10 runs for each data
set. The second column shows the average number of incorrect failure estimates. PFUKF
does not surprisingly show the best ability to deal with a wrong measurement model as
this was already indicated in the 1-D simulation in sec. 3. PFUKF is able to move the
particles towards regions of higher likelihood reducing the RMSE and making tracking of
the discrete failure nodes easier. We might be able to further improve the PFUKF estimates
using more particles or subparticles. The experiment once again showed that PFUKF is
capable of making more accurate state estimates than UKF when the algorithms are not
given conditions. Furthermore, UKF and PFUKF made more accurate state estimates than
PF and PFMC. The latter algorithms both fail when our beliefs of how data was generated
are wrong as indicated in the experiment in sec. 3.

In (2000), Koller & Lerner apply a generic PF to the watertank problem using the
network structure in Figure 6. They propose as future work to use a generic PF to sample
the discrete failure nodes and a more sophisticated PF to sample the continuous variables as
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Algorithm RMS CF/MF errors
mean var

Particle Filter - generic (PF) 256 204 56.3
Particle Filter - Metropolis-Hastings move (PFMC) 227 187 33.8
Unscented Kalman Filter (UKF) 208 43 30.1
Particle Filter - UKF proposal (PFUKF) 178 76 23.4

Table 2: Mean and variance of RMSE values of state estimates and average conductance
and fault detection errors using a wrong measurement model.

in this paper. It is impossible to make direct comparisons between this work and the work
of Koller and Lerner as pipe bursts etc. can be modelled differently. However, as we also use
the generic PF, a comparison between this and the other filtering techniques can be made.
In sec. 4 we showed that the generic PF (and EKF) are highly sensitive to the choice of
network structure and that the UKF based implementations were superior with respect to
continuous state mean estimation RMSE and discrete failure tracking. UKF and PFUKF
have outperformed both the generic PF and PFMC in every single experiment. In our
experiments we were able to track all continuous variable and discrete failure combinations
very well using UKF or PFUKF and a very low number of particles. Figure 12 shows
the tracking of C10 (conductance of pipe between Tank1 and the outside world and the
different events occurring during a typical simulation, similar results were obtained for the
other continuous variables - data not shown) for a simulation of 100 time steps using UKF.
We present a tracking plot for UKF instead of the superior PFUKF to show that we can
track the continuous variables and detect system faults very well using a very low number of
particles compared to the 50000 particles used in the generic PF in Koller & Lerner (2000)
without taking advantage of PFUKF, which is computationally more expensive than UKF.
A drifting factor of 1 was used and both process and measurement noise samples were drawn
from the Gaussian distribution N (0, 0.5). These settings gave a low SNR allowing us to
illustrate that tracking is possible even in a very noisy environment. The results were based
on ten runs with one data set using 300 particles. Notice the large error bar at time step 31
in Figure 12 corresponding to the burst of pipe 3 at time step 30 (only every second error bar
plotted for visual reasons). Apparently, UKF had no problem recognizing the measurement
failures as these events are not seen in the error bars for any of the three variables, as this
would have caused very large errorbars at the given points in time. Furthermore, notice
the larger error bars in Figure 12 when the drifting ends at t = 52 which might indicate
that the system in some runs estimated positive/negative drift of C10 as this is not crucial
for the flow measurements, when the conductance is very high (low resistance). At t = 80
it locates the burst of pipe 1 and stays at the bursting level. As mentioned, in (Koller &
Lerner, 2000), 50000 particles were used in the generic PF. We have shown that the new
network structure is better suited for PF (and EKF) than the original structure and that
the UKF based implementations still outperformed the generic PF using using a very low
number of particles.

16



Filtering in Hybrid Dynamic Bayesian Networks

Figure 12: Tracking of conductance variable C10. The estimated conductance C10 (red
line) using UKF is plotted with confidence intervals (plus, minus two standard
deviations from the mean estimate) and the true conductance C10 (black line).

5. Conclusion

In this paper we have implemented an extended Kalman filter, an unscented Kalman filter,
a generic particle filter, a generic particle filter with MCMC steps, a particle filter with
EKF proposal and MCMC steps, a particle filter with UKF proposal and MCMC steps
and applied the different filters to a 2T-DBN in a simulation of a continuous valued 1-D
state estimation problem comparable with the experiment presented in (v.d. Merwe et al.,
2000). However, our measurement model was extended to include a third order stage. We
experimented using the true process and measurement models with Gaussian and Gamma
noise added (data not shown) and an experiment using a process model different from the
true one. All experiments indicated that PFUKF (PFUKFMC) were the most accurate
and reliable filters. The latter setup was the most important experiment as most real-
life applications involve approximations to the ’true’ (unknown) process and measurement
models.

Next, we applied 6 of the 8 filters to a hybrid 2T-DBN simulation of a watertank problem
presented in (Koller & Lerner, 2000). We compared two network designs and showed that
PF and EKF were able to make good estimates of those continuous state variables that
were connected directly to the observation nodes. However, the estimates of the remaining
variables were very inaccurate. In comparison, UKF was able to update all state space
variables regardless of their connection to the observation nodes and UKF thus performed
equally well in both networks. The original network structure was discarded and the EKF
based algorithms not used in further experiments.

Then we experimented with different levels of data noise. The continuous state mean
estimates using UKF and PFUKF were influenced more by the measurement noise level
than the level of process noise. Large measurement noise levels made the UKF estimates
poor and PFUKF was able to move the particles towards the true state, hence reducing the
RMSE.
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Finally, we experimented using a measurement model different from the true one by
adding 5% to all the flow estimates. Again, PFUKF was capable of making more accurate
state estimates than UKF when the algorithms were not given ’optimal’ (true models and
low level of noise) conditions. Furthermore, UKF and PFUKF were making more accurate
state estimates than the generic PF and PFMC. Section 4 showed that we were able to track
the discrete failure nodes with a fairly low number of particles using UKF. These results are
to some extent comparable with the work of Koller and Lerner in (Koller & Lerner, 2000)
in which a generic PF was applied to the watertank problem using the network structure in
Figure 6. We have shown that a different network structure merely improved the accuracy
of the generic PF and still the use of UKF or PFUKF significantly improved the ability to
track the true failure nodes and estimate the continuous state variables with a low number
of samples.

All in all, we have compared several inference techniques and shown that it is possible
to do inference in a complex hybrid DBN. These networks allow for many complex real-
life problems to be modelled. We conclude that we should choose PFUKF when we work
on higher order models, when the measurements are noise (that is when UKF is not able
to make reliable estimates), when we do not know the ’true’ process and measurement
models and have the necessary computational time. Otherwise, we would settle for UKF or
standard PF. However, PF has the disadvantage that is is network structure dependent.
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